
(Refer Slide Time: 34:30)

So, what is this I am effectively trying to do? So, in this case register 𝑅5 will be 𝑅5 plus what

is the content of the memory location how can you find out if whatever is 𝑅1 will be added to

the content of the memory location how the memory location is calculated it is content of 𝑅1

+ 1.

So, I add value of 1 and I add what is the content of 𝑅1 that will be the effective memory

location I get the operands from there add to 𝑅5 content and store it in the 𝑅5 itself. So, initially

they are assuming that 𝑅1 is having the value of 1 and 𝑅5 has the value of 0 that is 𝑅5 is reset.

So, if will be something like 𝑠 = 𝑠 + 𝑖. So, s is reset and the 𝑖 is going to be implemented

the and in fact what is 𝑖? So in fact, it’s something like 𝑠 = 𝑠 + 𝑎[𝑖]. So, 𝑎 is the array and 𝑖

is your instruction. So, 𝑅 is basically nothing but in this case your 𝑅1 and s is nothing but in

this case your 𝑅5 ok.

So, now see they are saying that the initial content of 𝑅1 is 1 and R5 sorry 𝑅1 is 1, 𝑅1 is 1 sorry

this 𝑅1 is 1 and R5 is 0 that is reset and this is one. So, initially the elements of the array may

be starting from 1. So, array is the location of the array are starting from memory location 1, 2,

3, 4, 5, 6 and this initially has the value this initially has the value of 0 reset and 𝑅1 has the

value of 1.

So, the so what will happen the instruction takes the address 1 and adds to the content of 𝑅1.

So, the content of 𝑅1 and 𝑅2 both have 0. So initially both of them has 0 value so that is this 1

391

will be added to the content of 𝑅1. So, 𝑅1 is having a value 0. 0 + 1 is 1. So, effective address

is 1 and it will address the first content of the memory location. So, the memory location is

something like this.

(Refer Slide Time: 36:23)

So, 0 there is garbage, 1 there is some data, 2 there is some data and so forth. So, initially your

both 𝑅5 and 𝑅1 are reset. So, generally it has the value of 0 this also has the value of 0, so 0 +

1 is 1, so you are going to address this value.

So, whatever will be the content will be added with 0 that is the content of R5 and it will be

stored over here. Next what you will do you will increment the value of the register number

𝑅1. So, 𝑅1 will be contents of one will be added to the content of R5 that will be done.

Then next that is actually what I have told you whatever is present over here will be added to

the contents of 𝑅5 which is now 0, so it will be 0 plus the content of this one is nothing but this

one and it will be stored at 𝑅5. Next the content of 𝑅1 is incremented so this one will now have

the value of 1. So, 1 + 1 will be 2. Now it will be pointing to this next memory location that

will be again loaded added with the content of 5 and stored back.

So, there is something happening like 𝑠 = 𝑠 + 𝑎[𝑖] where 𝑎 is an array and 𝑖 is the index. So,

this index is actually keeping on incrementing by 1, 2, 3, 4, 5, 6 and it is and that continuously

first memory first array location, second array value, third array value, fourth array value you

are getting and storing with them. So, that is why it’s a very simple example of an indirect sorry

392

index addressing mode, it’s again a displacement addressing mode, but this in this index

register is our own our own defined or user available register which is 𝑅1 in this case, in the

other way it can be any user register which can be used by a programmer ok.

(Refer Slide Time: 37:58)

So, now basically now we are going to see some more examples which will give you a more in

depth idea of how basically addressing mode happens where the address, where the values are

located etcetera. Because in most of the cases as I was saying that the instruction is basically

opcode and some operand or some addresses, but sometimes the size of the instruction cannot

be such nice or such of the length of the or the width of the memory cannot be so good that it

will hold the it will hold the whole instruction in 1 word there can be in multiple words; that

means, the opcode will be one place and some part of the operand will be there in the word and

the and the space is exhausted.

The remaining part of the instruction will go to the next memory location. So, taken the 2

memory location together you can have a instruction. So, that is called multiple word

instruction. So, now you have to go look at such complexities. So, we are considering a CPU

with 8-bit data bus and 16-bit address bus. So, it’s very simple it is something like this is 8 bits,

and the whole space is 2 to the power 16, then then some other assumptions here we are taking.

So, what is the assumption? The first byte of the instruction is the opcode. So, what do you

mean by that? So, in this case as I told you the instruction has some specific characteristics that

393

is the opcode and then after that you can have a lot of other modes like immediate addressing

you have the data value etcetera.

So, when I say there is an opcode. So, when I say that basically this is your opcode. So, some

part of the instruction is deformed taken by this one. So, in this case I am say saying that the 8

bits. So, as I told you the instruction basically has an opcode and then some other places for

operands. So, in this case I am assuming that the first byte is the instruction itself; that means,

if it is an 8 bit word.

(Refer Slide Time: 40:05)

So, I am saying that the opcode takes the whole part of it that is because I want because we are

trying to discuss in this part that is multiple word instructions that is this is your memory, this

is your 8 bits, and in fact, this part opcode is taking the whole 8 bits together.

So, then what will happen then the operands will be present in the other parts because there is

no space available to do that. So, for two byte instruction this taken by the instructions

instruction because in this case there cannot be any single word instruction because one word

actually in this case is 8 bits.

And if you look at it the whole 8 bits are taken by your opcode. So, obviously, this 8 bits is the

opcode the next second bit can be some kind of an operand. So, for two byte instruction this is

taken by the instruction data, data or it can be if it’s a direct addressing mode so, it will be

reference of a memory register.

394

For 3 byte instruction the last two basically these two will be your data or it will be pointing

out in some memory location and this one will be your opcode. So in fact, what are we showing

that if the in this case the memory is 8; 8 in length and the op means instruction set is larger

because the opcode is 8 bits and then other bits are reserved for operands or data.

So, you the whole instruction has to be spread out in to multiple memory location and in fact,

this is what basically happens in all cases very very rarely we will find instructions which will

fit into a single word then if it is a single word instruction then life is very easy.

First program counter 1, then program counter 2, then program counter 3, one instruction after

another, but if there is multiple word instruction then first one, if it’s a 2 word instruction then

we jump to 3, then if it is a single word instruction then again we jump by 1.

So, the movement of 𝑃𝐶 is non regular and it depends on the size of the instruction. So, we are

assuming that the memory instructions are in it for this present example we are assuming that

we the instructions are stored in a memory location which is continuous and it starts from 0770

hex. So, this is this represents pictorially.

(Refer Slide Time: 42:03)

So, this is the first instruction is add immediate 75 so; that means, I told you it’s a 8 bit as well

as your data is also assumed to be 8 bits. Now in this case I told you the whole memory size is

only 8 bits. So, the instruction this whole instruction together cannot fit into a single word add

395

immediate ADI that will fit in the first word that is 7070 hex and a next that is the your data as

it’s an immediate instruction it will be available in the just immediate address, immediate word.

So, in this case first your program counter will go over here and when the instruction is

executed after that it has to go to the third memory location it cannot be the +1 it will be +2

because in this case it is a 2 word instruction it is a 3 word it will be +3.

So, what happens? So this is the case the data is 75 add immediate means load the value of 75

sorry add the value of accumulator with 75 and store back in the accumulator. So, this 75 is

taken, it is added to the accumulator and it will be in accumulator itself. So, this is the example

of a immediate addressing mode and how it is stored in two words we have shown that.

(Refer Slide Time: 43:09)

Next is add it’s a direct that is it is saying that the this is your memory location. So, it is saying

that add will be first gone that is 8 bit is taken then now in this case it is not an immediate

addressing mode it’s a direct addressing mode.

So, it is referring to a memory location. Memory location in this case is requiring 16 bits that

is first hex value, second hex value, third and fourth. So, now obviously, this 2 is 4 bits and 8

bits and these 2 is 8 bits 00 is 8 bits that is 00000000, 7 means 0111 and 5 is 0101. So, 00 and

75 so this is taking 8 bits and this is taking 8 bits. So, this will again occupy one word space in

the memory. So, this is the opcode then 00 is the LSB, and this one is the MSB of the address.

So, it is stored over here.

396

So, now add direct so 0075 it is 7500 it will be addressing so these two will be together

addressing the memory location 7500 hex, content is 5 and it will be added to the accumulator

content has stored back to the accumulator. So, as I now we will easily appreciate the fact now

as the data, memory location everything is split over multiple words.

So, the hardware is becoming more complex because in this case I have to add these contents

of two different memory location side by side then I have to give it to the address bus then I

can only give the value of 7500 and I can address that memory location I can get the content 5.

But if an instruction was quite big maybe in this case 8 + 8 + 16, 32 if this can be 32 bits then

the program counter will be first here then will be +1 then it will be +1 and so forth and then

these two we can just take together and you can address it; that means, you need not address

two different memory locations to get the value of the effective address.

(Refer Slide Time: 44:59)

But actually this is not as I told you this is not a very practical situation.

397

(Refer Slide Time: 45:02)

Because we cannot have such wide memory 32 bit memories are available. But as we are we

are discussing in a much more scaled down to. So, for us basically this may be a quite large

size.

Because nowadays, when you are talking about 32 bit memories when the memory size is

becoming so high that 16 bits are not enough to represent the whole spectrum of memory which

can be in the levels of gigabytes. There are several other examples we are taking one by one.

So in this case it is saying it is add immediate 0800 ok and then it is add indirect and in this

case add and the bit is 8800. So, the content of the main memory value will be present in 8088.

So, it will be it’s a indirect register.

So, what happened actually? So, in this case it not direct, but this is an indirect one. So, in this

case it is saying add indirect the content of memory at the operand is 0800 and it has to be

stored with the it will be means accumulator has to be added. So, in is an indirect addressing

mode. So whatever is the opcode, opcode is saying add something to the accumulator, but

where I will get the operand this is an indirect one it is saying 0800; that means, this two will

be referring to a memory location that is 8000; that means, you add it with the content of

memory location 8000.

But what is there it is 8000 so, the content here is 70, but as it’s an indirect addressing mode I

cannot do that indirect addressing mode means here again I will get the I have to again refer to

398

this memory location to get the exact memory locations where the data will be available. So, it

is pointing to 8000 so this is the location.

Now in this case it is mentioning as 70 because this location is again 8 bits so, but the whole

memory size their length means memory address space is 16 bits, but the width is 8 bit. So,

here the content is 70 so, it is actually these two taken together is referring this memory location

8000 so, now it is having the value of 70.

So, the real content of the memory should be available in memory location number 70, but 70

is an incomplete address something more is required. Because the memory address space is 16

bits, but as this width is 8 bit. So, the whole instruction a\ whole address cannot be placed over

here. So, by default I will again take the next value I have to take the both the value because

this is 8 bits and I can only store half of the address here so it is 70 FF.

So, basically the effective address is FF70 which is actually again a redirection from here to

here where actually the data is present which is 5 which is added. So, let me tell you so what

happens add immediate 8000. So, that is; what is the address of the indirect address of the data

so I am going over there the content here is 70.

So, by indirect addressing the contents will be available in memory location number 70, but 70

cannot be a memory location address because the space is 16 bits and this space is only 8 bits.

So, I require two words to store the again address so by default 8000 plus 1 this contiguous

memory locations are taken so 70 and FF.

So, FF and 70 are taken which is this memory location which is the exact location of the data

which is available as 5 so in this way I go on calculation. So, if you can understand that if more

values or more number of operands or operand maybe more precise or larger means larger

memory space has to be located then your instruction starts becoming multi word instruction.

So, in this case it’s a 16 bit memory so you are requiring two words other than the opcode to

get the address if the address space is memory space is slightly higher say this is 32 bits then

you require 1234, 4 memory locations to address the one memory space. So, higher memory

space means in this case you require more number of memory locations to do it. So, it becomes

a more number of multiple word memory.

399

Then just to come before just we complete and go to other examples let us take a very simple

example of add x which is the displacement addressing 5080. So, in this case 50 is one part, 80

is another part. So, as we all know that basically if you look at it so 8050.

So, in this case add x that is your displacement addressing we are assuming that and the content

is 50 and 80. So, basically and there is an index register. So, basically in this case it’s a

displacement addressing mode the address is obtained by provided in instruction with the value

in the in index register.

So in fact, actually it should be ADDX; I am just making a slight mistake. So, again basically

maybe I can call it as 𝑅4 which is my basically the index register here I have forgot to mention

it should be basically 𝑅4 or something like that ADDX 𝑅4 and then 5080. So, 5080 the

instructions starts from 70 the next two bits are this one so in this case 8050. So, this one will

generate the address location of 8050 which is in the instruction and the instruction is ADDX

𝑅4 8050 and 𝑅4 assuming that the content is one which is shown over here.

So, you are adding it to so it will become 8051 the content of 8051 is 5. So, you will add with

the accumulator to get the value this is simple displacement addressing which I have told you

in this case I am explicitly referring 𝑅4 which is my index register assuming the value of 1.

So, the memory location in the instruction is basically ADDX 𝑅4 and in that the 𝑅4 is added

with the content that is 8050 that is 8050 with 1 that is the content of 8051 is 5 and you get the

value.

400

(Refer Slide Time: 51:16)

So, in this case the displacement has happened by one because the value of the index register

is 1. Next if I increment the value of index register by 2 so, it will be accessing memory location

number 8052 and we can keep on doing it. Then the last addressing mode which is quite simple

used mainly in a stack machine.

So, in a stack machine what happens as I told you basically this simple example we have taken.

So, let us assuming that there is a stack there is a stack over there and there is a pointer so this

stack can go from anywhere. Because we generally get to access only a certain portion of this

stack. So, there is something called a stack pointer and then we can do such type of instruction

like PUSH, POP, ADD, SUB. PUSH means you are here the number of instructions would be

very limited we have already discussed in some previous units I can push the values you can

pop the values and when you want to do some kid of operation it will take the top two elements.

So, some examples like PUSH, POP, ADD, SUB some of the examples we will try to show.

401

